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An analysis is given for the electro-kinetic transport properties in a system consisting 
of a line of identical spheres placed equidistantly with their centres on the axis of a 
cylindrical tube containing a viscous fluid. Both the spheres and the wall of the tube 
are charged and a two-species symmetrical electrolyte with valence Z is present in the 
system. As a result of the charges on the surface of the spheres and on the surface of 
the tube electrical double layers will develop. When an electrical field is applied to the 
system an electrokinetic motion is induced. We will use the thin double layer theory 
(Dukhin & Derjaguin 1974; O’Brien 1983), valid for sufficiently high electrolyte 
concentration and where the polarization of the electrical double layer is included. 
Using a multipole expansion an infinite set of linear equations for the multipoles will be 
derived from which the electro-kinetic transport coefficients may be determined. These 
coefficients depend on the system parameters, such as the radius of the tube R, the 
radius of the sphere a, the separation between the spheres d, the Debije radius K - ~ ,  the 
zeta-potentials of the spheres cp and of the wall of the tube cw and the valency Z of the 
electrolyte. From these coefficients a relation is found between the pressure drop Ap per 
unit length and the drag force D on the spheres on one side and with the velocity U 
of the spheres, the total discharge Q and the applied electrical field E,, on the other side. 
For some values for the system parameters we have numerically solved the infinite set 
of linear equations by truncation and calculated the transport coefficients. We have 
also calculated the streamlines for some situations. The plots of these streamlines show 
that depending on the conditions on the system vortices may appear. 

1. Introduction 
This study is a theoretical examination of the steady axisymmetric creeping motion of 

fluid through a cylindrical tube containing a line of identical spheres placed equally 
spaced on the axis of the tube. Both the surfaces of the spheres as well as the surface 
of the tube possess a surface charge characterized by the zeta-potentials C p  and cw 
respectively. As a result of electrolyte present in the system the surfaces are surrounded 
by an electrical double layer with a thickness given by the Debije radius K - ~ ,  depending 
on the ionic strength of the electrolyte. We assume that we are in the limit of thin 
double layers, so that both the conditions KU 9 1 and KR 9 1 are fulfilled, with a the 
radius of the spheres and R the radius of the tube. When an electrical field E, is applied 
to the system, the fluid will be set into motion. This motion is induced by the electrical 
double layers of the spheres and the wall where the charge density is non-zero. When 
the spheres flow force free through the tube they will attain a terminal velocity, i.e. the 
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electrophoretic velocity. For a single charged sphere in an external electrical field E,, in 
an unbounded fluid the electrophoretic velocity U is given by the Smoluchowski 
formula (Smoluchowski 1921) in SI units: 

Here, 7 is the fluid viscosity, C p  the zeta-potential of the particle surface, eoer the 
permittivity. This formula is derived under the condition of a thin double layer ( ~ a  % 
l), a uniform zeta-potential and an undisturbed ion distribution when the electrical 
field is applied. This last condition implies that the double layer will not become 
polarized when an electrical field is applied. Comparison of analytical expressions (e.g. 
O’Brien & Hunter 1981 ; O’Brien 1983) for the electrophoretic mobility of a sphere for 
finite K a  with exact numerical calculations (O’Brien & White 1978) shows that the 
polarization of the double layer may be neglected when the following condition is 
fulfilled : 

with zi the valency of the highest charged counterion, k the Boltzmann constant, T the 
absolute temperature and e the elementary charge. Relation (1.2) places a restriction 
on the value of the zeta-potential C p .  In the thin double layer theory (Dukhin & 
Derjaguin 1974; O’Brien 1983)’ where the polarization of the double layer is taken into 
account, this restriction on the zeta potential is overcome. 

The electrophoretic motion of a charged sphere in the neighbourhood of a boundary 
or of an assembly of charged spheres has also been studied intensively. Keh & 
Anderson (1985) studied the motion of a single charged sphere in the neighbourhood 
of a single flat wall, two parallel walls and a long circular tube. Using a method of 
reflections the velocity of the sphere is determined in powers of h up to O(h6), where 
h is the ratio of particle radius to distance from the boundary. Keh & Chen studied the 
electrophoretic motion of two charged spheres moving normal (1989~) and along 
(1989b) their lines of centres. Here the problem was solved exactly by using a spherical 
bipolar coordinate system. Employing the same method the motion of a charged 
sphere parallel to a dieletric plane was also studied (Keh & Chen 1988). All these 
studies, however, assume infinitely thin double layers where the double-layer 
polarization may be ignored. Dukhin & Derjaguin (1974) developed a theory where 
they do take into account the polarization effect for a charged sphere with a thin but 
still finite electrical double layer in a symmetrical electrolyte. This treatment was 
simplified and extended by O’Brien (1983) to include general electrolytes. Using this 
theory several electrokinetic transport properties, such as the conductivity (O’Brien 
1981 ; O’Brien & Perrins 1983) and electro-osmotic transport properties (O’Brien 1985) 
were calculated for concentrated suspensions of charged spheres. The electrophoresis 
of a spheroid with a thin double layer was also studied (O’Brien & Ward 1988). A 
comparison of the results for the electrophoretic mobility of a single sphere in an 
unbounded fluid obtained by using the thin double layer theory including polarization 
(Chen & Keh 1992) with numerical solutions (O’Brien &White 1978) of the linearized 
electrokinetic equations valid for an arbitrary double layer thickness shows an accurate 
agreement for values of K a  > 30 and arbitrary zeta potentials. This result is in accord 
with the property of the thin double layer theory that produces results that are accurate 
for arbitrary zeta-potentials up to O(l/Ku). 

Chen & Keh (1992) employed a collocation technique to study the axisymmetric 
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electrophoretic motion of an assembly of charged spheres taking into account the 
polarization effect. Mobilities are calculated for clusters of spheres consisting of up to 
three spheres and apply for double layers with a small but still finite Debije radius K - ~  

compared to the radius of the particles. None of the above-mentioned work focuses on 
the combined effect of multiple sphere interaction and a bounding surface at the same 
time. The main reason for studying this situation in this paper is the existence of a 
variety of practical applications associated with the motion of a charged emulsion or sus- 
pension through a porous medium under the action of an electrical field. As a result of the 
presence of surface charges on the spheres as well as on the wall of the porous medium 
the spheres will exhibit an eletrophoretic motion that is disturbed by the electro- 
osmotic flow induced by the charged wall of the porous medium. In many cases 
(Tikhomolova 1993) there is no single view even as regards the direction of action on 
the suspended particles (acceleration or retardation compared to electrophoresis in an 
infinite medium) in these electro-kinetic flows. For describing this situation it is 
necessary to study the interaction between multiple spheres that are charged and a 
charged bounding surface. As a first practical example one may think of secondary oil 
recovery in the petroleum producing industry by the application of an electrical field 
(Tikhomolova 1993). A maximum of 40% of the oil in a header can generally be 
produced by primary methods. The next step is the employment of secondary methods, 
like the displacement of oil by pumping aqueous solutions under pressure (flooding) 
into the rock formation, which makes it possible to increase the oil yield by a maximum 
of 20 %. In order to obtain a higher oil yield an electrical field near a well bottom may 
be applied, because when flooding becomes ineffective as a result of a high 
hydrodynamic friction in the porous body the electro-kinetic motion is still active. A 
second example may be found in the field of capillary electrophoresis, especially in 
micellar electro-kinetic capillary chromotography. Here a micellar solution together 
with a sample of uncharged compounds that have to be separated is injected into a 
capillary. Because the micelles are charged they will be set into motion when an 
electrical field is applied. This motion will be influenced by the electro-osmotic flow 
induced by the electrical double layer at the wall of the tube. Depending on the affinity 
for the micelles of the different compounds of the sample to be separated each of the 
compounds will spend a characteristic time inside the micelles. Because the micelles are 
moving at a speed that differs from the surrounding flow field the compounds of the 
sample will be separated. In order to increase the efficiency of this separation a better 
understanding of the details of the electro-kinetic flow is desirable. 

In this study the assumption is made that the spheres move along the axis of the tube. 
This assumption is not necessarily unrealistic, especially when the radius of the tube is 
not much larger than the particle radius and because when the particles are deformable 
they tend to migrate towards the axis of the tube. This behaviour was observed first by 
FAhraeus (1928) and extensively studied by Goldsmith & Mason (1962). It is 
responsible for the Fghraeus-Lindqvist effect (193 l), which refers to the observation 
that the effective viscosity of blood is less in capillaries than in vessels. In the system 
we study two additional effects occur in comparison with the electrophoretic motion of 
an isolated sphere in an infinite medium. On the one hand, when the spheres flow force 
free through an uncharged tube they will attain an electrophoretic velocity that 
depends on the interaction with the other spheres and the wall of the tube. When on 
the other hand the tube has a surface charge an electro-osmotic flow will also develop 
in the tube. This has a strong influence on the resulting flow field within the tube and 
on the velocity of the spheres. In this respect it is important to distinguish between two 
situations. In the first place we may consider a closed system, where the total discharge 
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of fluid and particles relative to the tube equals zero. To accomplish this an additional 
counter-pressure is built up in the system which induces a counterflow establishing a 
zero discharge. In the second place we may consider an open system where we have a 
non-zero discharge. Another situation of interest that will be addressed is a purely 
electro-osmotic flow, a situation which will occur when the spheres are held fixed at 
their positions relative to the tube. The electro-osmotic flow through a cylindrical tube 
in the absence of spheres has been treated by Rice & Whitehead (1965). Their treatment 
uses the Debije-Huckel approximation and is therefore only valid for low zeta 
potentials. The way we formulate the problem makes it possible to study not only the 
purely electrophoretic motion of the spheres or the purely electro-osmotic flow 
properties, but also all intermediate situations. Owing to the periodicity of the system 
we study it is possible by using a multipole expansion method to obtain results for the 
transport properties. The multipole moments are obtained numerically by truncating 
an infinite set of linear equations. By taking into account more and more multipole 
moments it is possible to obtain results with the desired accuracy. 

The outline of the paper is as follows. In $2 the basic equations for the thin double 
layer theory are formulated as derived by O’Brien (1983). In $3 we specify the system 
and in $4 the equation and the boundary conditions for the ionic function in this 
geometry are formulated and a solution is constructed in terms of a multipole 
expansion. In $5 the equation and boundary conditions for the velocity field of the fluid 
are formulated for this system in terms of the Stokes stream function. Again, a 
multipole expansion is used to construct a solution. In $6 the transport properties in 
the system are expressed in terms of the multipole moments. A linear relation between 
the pressure drop per unit length and the drag exerted on a sphere on the one side and 
the velocity of the spheres, discharge and the electrical field on the other is given. The 
coefficients in these relations are the electro-kinetic coefficients and are expressed in 
terms of the multipole moments. For some system parameters these electro-kinetic 
coefficients are tabulated. In $7 some modes of electro-kinetic transport depending on 
the conditions placed on the system, e.g. a closed or open system, are discussed. In $8 
some plots of the streamlines are given to illustrate the possibility of the occurrence of 
vortices. 

2. Basic electro-kinetic equations and boundary conditions 

situation, we may apply the ion conservation law: 
In the absence of any chemical reaction in the electrolyte and in a stationary 

U . j ,  = 0, (2.1) 

withj, the flux density of ions of type i. In the double layer theory this flux is assumed 
to be given by 

where n,, D, and z, e are the number density, diffusivity and the charge of the ion of type 
i, Y is the electrostatical potential and u the fluid velocity. The terms in j i  denote the 
contribution due to diffusion, conduction and convection, respectively. The ion density 
n, and the electrostatical potential Yare related to each other by the Poisson equation 

(2.3) 
z.e 

A y = - E L  ni 9 

i = 1 € 0  6, 
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where e0e, is the permittivity of the electrolyte and A the Laplace operator. The fluid 
motion is described by the equations 

N 

p v - V v  = - V p + y A u - C  n i z i e U Y ,  

V - v  = 0. 

i=l 

Here y is the viscosity andp the hydrostatical pressure. The last term in (2.4) represents 
the electrical force per unit volume of the fluid. In order to determine the dimensionless 
quantities in the problem we scale (Saville 1977) all distances by a characteristic length 
L, the potential Y by e / k T  and the fluid velocity v by e, ,e,(kT/e)2/(1/yL).  The 
diffusivities of the ions are scaled by the diffusivity D, of one of the ions and the ion 
concentrations are scaled on C & l z : n y .  Substitution into (2.1) to (2.5) leads to the 
following set of equations with dimensionless (primed) variables : 

Rev’.V’v’ = -V’p‘+A‘YU’Y+A’v’ ,  (2.6) 

Pe v’ . V’n; = D; V‘ - (zi n; V‘ !€” + V’n;), 

V’. v! = 0, 

A ’ Y  = -(KL)’Y. (2.9) 

This identifies the following dimensionless groups : Reynolds number Re = q, e,(kT)’p/-  
(ye)’, the Peclet number Pe = e,, e,(kT/e)2/yDl and KL = (e2 C,fi=, zt n? L’/e,, e,)liZ as 
a measure for thickness of the electrical double layer. The electrical field is E, scaled 
as LeE,/kT and the zeta potential 5 as ec /kT.  For typical values of the parameters Re 
is small and we are allowed to ignore inertial term in (2.4), but we have to take into 
account convective effects because Pe = O(1). We will use the thin double layer theory 
and we therefore require KL % 1, but there is no restriction on the zeta potentials. We 
assume that an external electrical field is applied that is so small that Eh 6 1 and we 
only consider disturbances linear in the electrical field. This enables us to expand the 
electrokinetic equations (2.1E(2.5) in Sn, and SY, which are the linear deviations from 
equilibrium values as a result of the applied electrical field, as 

ni = nf+Sni and Y = P+SY. (2.10) 

Here n: and P denote the equilibrium values for the ion densities and electrostatical 
potential. From (2.1F(2.3) it follows that P fulfils the Poisson-Boltzmann equation 
and n: a Boltzmann distribution (Appendix A). It is convenient to define the ionic 
function pi for ion species i as (O’Brien 1981) 

(2.11) 

For a dilute electrolyte pi differs from the electrochemical potential by a constant 
depending on temperature and pressure. Linearizing this expression, by substituting 
(2.10) and ignoring small terms of O(S’) gives 

p,(r) = k T w +  n? ezi SY. (2.12) 

After linearizing the electrokinetic equations (2.2) and (2.4), using (2.10) and substituting 
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the expression for Sn, obtained from (2.12) we find the following equations for pi and 
v (O’Brien & White 1978): 

(2.13) 

N 

rA(V x v) = C Vn: x V p i ,  (2.14) 

v . 0  = 0. (2.15) 

The hydrostatical pressurep has been eliminated by taking the curl of (2.4). Beyond the 
double layers the ionic gradients are absent to Vn: = 0 and the equations simplify to 

Ap, = 0, (2.16) 
rA(V x U) = 0, (2.17) 

v - v  = 0. (2.18) 

The thin double layer theory now uses the fact that the Debije radius K - ~  is much 
smaller than the particle radius a. From (2.18) it now follows that the ratio of 
tangential to normal fluid velocity is of O(Ka), so the fluid velocity is mainly tangential 
to the surface of the particle. Furthermore, from a local solution of the electro-kinetic 
equations it can be shown (O’Brien 1983) that the ionic potential is approximately 
constant in the direction normal to the surface of the particle. By integrating (2.14) 
over the double layer the tangential fluid velocity relative to the particle surface at the 
outer edge of the double layer can be derived (O’Brien 1983) as 

i=l 

l N  

”I i=l 

v, = - - C V ,  pi JOw y(n: - ny)  dy, (2.19) 

where u, = v . ( l - n n )  and V ,  = V . ( l - n n ) ,  (2.20) 

with n the unit vector pointing normal to the particle surface and y the distance as 
measured normal from the surface. Since we are dealing with thin double layers the 
particle density n! is supposed to fulfil the flat-plate solution of the Poisson-Boltzmann 
equation. When we are in the limit of thin double layers (2.19) reduces to the 
Helmholtz expression for electro-osmotic flow, i.e. u, = - (&, E? e r /q)  Vy?. For the ionic 
function pi it can be shown that, by equating the net tangential flux of ions entering 
a portion of the double layer to the flux leaving to the bulk electrolyte (O’Brien 1983), 
on the outer edge of the double layer the following boundary conditions apply: 

with the surface Laplacian A, = ( 1  - nn) : VV and pi given by 

(2.21) 

(2.22) 

for the highest charged counter-ion and pi = 0 for all other ions. Here it is assumed 
that there is only one kind of counter-ion with the largest valence present and that the 
tangential fluxes of the remaining ions are negligible. Furthermore 
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FIGURE 1 .  Geometry of the system. 

where mi is the non-dimensional ionic drag coefficient in SI units, n? is the bulk number 
density of the ions of type j and 2 is the absolute valence of the electrolyte. The 
expressions (2.19)-(2.23) for pi and u valid at the outer edge of the double layer will 
be used as boundary conditions for the solution outside these double layers. Because 
the double layers are thin, these boundary conditions will be applied at the surface of 
the particles instead of on the outer edge of the double layer, introducing an error of 
0 ( 1 / K a ) .  For simplicity, it is assumed that we have to deal with one symmetrical 
electrolyte with a valence 2 and we only consider the flux of the counter-ion. Chen & 
Keh (1992) tested this approximation for the electrophoretic motion of one sphere in 
a symmetrical electrolyte and found very good agreement with calculation where the 
contribution of all ions to the flux was taken into account. Apart from the boundary 
conditions at infinity (2.16)-(2.23) form the basic set of equations of the thin double 
layer theory that we will use for analysing the electro-kinetic effects occurring when an 
electrical field is applied to a line of charged particles placed regularly on the axis of 
a charged cylindrical tube. 

3. The motion of a line of charged spheres placed regularly on the axis of 
a charged tube 

We consider a line of charged identical hard spheres placed at equidistant positions 
from each other with their centres on the axis of a cylindrical tube. The spheres are all 
identical and are characterized by a radius a and a zeta potential &,. The spacing 
between the spheres is d. The cylindrical tube has a radius R and a zeta potential 5,. 
As shown in figure 1 an external electrical field is applied directed along the axis of the 
tube in the positive z-direction. The origin of the coordinate system is at the centre of 
one of the spheres. For simplicity we assume that we have an one-species symmetrical 
electrolyte with an absolute valency 2. Our aim is to find the solution for the ionic 
function pi, with i = 1,2 labelling th8 positive and negative ions of the electrolyte 
respectively, and for the velocity field u when an electrical field E, is applied. In view 
of (2.19) the boundary condition for the velocity field contains the ionic function pi, 
so one first has to find a solution for the ionic function pi before a solution for the 
velocity field u may be found. 

4. Governing equations and solution for the ionic function 

The ionic function pi for ion type i has to satisfy the Laplace equation, cf. (2.16): 
4.1. Governing equations for the ionic function 

Api = 0. (4.1) 

Because the system consists of a cylindrical tube containing spheres we will employ 
both cylindrical and spherical coordinates as shown in figure 1, denoted by @’, z’) and 
(r’, 6), respectively. The distances in the problem are non-dimensionalised by the radius 
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R of the tube, and we furthermore define the following dimensionless (unprimed) 
variables : 

a d P’ Z’ r’ eE’ R I.; E, = 0 LL. = - R’ R R’ Z = R ’  r = -  R’ k T  ’ ’ kT’  
A = -  K* = KR, P = -, p = - 

(4.2) 
As follows from $2, (4.1) is supplemented by the following boundary conditions : 

(i) at the wall of the tube 

(4.3a) 

1 
with Pi = m( 1 +$)(exp(eZ] 1/2kT)- 1) for the counter-ions, (4.3b) 

pi = 0 for the co-ions; 

(ii) at the surface of the spheres 

with A: the surface Laplacian on the unit sphere and 

/3? = 0 for the co-ions. 

(4.3 c) 

(4.4a) 

for the counter-ions, (4.4b) 

(4.4 c) 
undisturbed external electrical The pi, represents the electrostatical potential Y of the 

field E, pointing in the positive z-direction with E = - V Y and is given by 

We assume that there are no macroscopic gradients in the electrolyte concentration. 
p. ‘ , O  = -z%E,z. (4.5) 

4.2. Solution for the ionic function 
Noting that we have to deal with a linear problem we may write the solution as a 
superposition of three fields : 

Here pi,, is given by (4.5) and p&,h represents the influence of the spheres on the ionic 
function and may be written in terms of decaying solid spherical harmonics as 

p. z = p* a ,  sph +p.i,cyl +pi,O. (4.6) 

with p, = cos (en), rn = r -  R, and R, pointing to the centre of sphere n, 8, the angle 
that r ,  makes with the z-axis and Z&L,) denoting Legendre polynomials of the Ith 
degree (Hobson 1955). The as yet unknown coefficients pi are spherical multipole 
coefficients and are independent of n because all spheres are identical to each other. The 
summation in (4.7) starts at 1 = 1 because the system contains no spheres having a net 
charge and therefore the 1 = 0 term is not present. Furthermore only terms with 1 odd 
will contribute because the external field pi,o is a field odd in z. The pi ,cy l  is the field 
resulting from the tube and is written as in cylindrical coordinates as 

2.n 
pi,cyl = C qk Zo(mkp) sin (mkz) with k = -. 

00 

m=l  P 
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This is the solution of the Laplace equation in cylindrical coordinates that is uneven 
and periodic in z and has a finite value when p = 0. Here I, is a modified Bessel function 
(Watson 1944) of the first kind and qk are the as yet undetermined coefficients. We will 
now construct a solution that fulfils the Laplace equation (4.1) and the boundary 
conditions (4.3) and (4.4). In order to construct this solution we will use a two-step 
procedure. In the first step we only take into account the dipole moment of (4.7) and 
the full solution in cylindrical coordinates. At this point we emphasize the fact that all 
higher-order spherical multipole moments will be included into the calculation in the 
second step. The multipole coefficients qk are determined in the first step by the 
boundary condition on the wall of the tube and will be referred to as cylindrical 
multipole moments. So we have 

(4.9) p.  z = p. z , s p h + P i , c y l + h , O ,  

(4.10) 
n=-m ‘ n  

Transforming the first term on the right-hand side into cylindrical coordinates, we have 

(4.11) 

Applying boundary condition (4.3) we obtain 

Note that pi,o drops out of the equation. To solve for qk from (4.11) we use the 
orthogonality of the sin-series and multiply (4.12) by sin (rnkz’) and integrate over one 
period to find (Appendix B) 

Here KO is a modified Bessel function (Watson 1944) of the second kind. Note that not 
only does ( j ~ ~ , ~ ~ ~ + , u ~ , ~ ~ ~ )  with qk given by (4.13) satisfy the Laplace equation and 
boundary condition (4.3) at the wall of the tube, but also all derivatives of pi of 
arbitrary order with respect to z will. In order to fulfil boundary condition (4.4) at the 
spheres we now write as a second step the solution as 

(4.14) 

Because pi is a common factor of pi, Sph and pi, cyl, we have absorbed this coefficient, 
without loss of generality, in the as yet undetermined coefficients Gd,. It is important 
to realize that all higher-order spherical multipole terms in (4.7) are now generated by 
the higher-order derivatives with respect to z of dipole term in (4.14) (Hobson 
1955) and in this way all multipole terms occurring in (4.7) are included in the 
calculation. To secure that the solution is odd in z, only derivatives of even order in z 
are taken into account. The spherical multipole moments Gi, are to be determined 
from boundary condition (4.4) at the spheres. Because all spheres are identical to each 
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other, and so the coefficients Gis are the same for each sphere, we only have to satisfy 
(4.4) at an arbitrary chosen reference sphere. We choose our reference sphere (labelled 
by n = 0) the one centred at origin of the coordinate system, so R, = 0. Before we can 
apply boundary condition (4.4), (4.14) must be expressed in spherical coordinates and 
expanded around the origin. First we will express in spherical coordinates by 
using (4.9) (Hobson 1955): 

(4.15) 

The next term in (4.14) may be expanded in spherical coordinates as 

with ,uo = cos(8,), ro = r - R ,  and 8, the angle that ro makes with the z-axis. Result 
(4.16) may be obtained in two steps. First we use 

(4.17) 

a relation which is derived in Appendix C. After substitution of this expression we take 
the derivatives with respect to z (Hobson 1955) to find (4.16). The cylindrical part of 
the solution (4.16) is now expanded around the reference sphere at R, = 0. The 
spherical part (4.15) is, however, not yet expanded around this point. In order to 
accomplish this we proceed by writing (4.15) as 

The prime on the summation sign indicates that the term n = 0 is excluded in the 
summation. The last term on the right-hand side is expanded around R, = 0, by means 
of a generalized form of the addition theorem (see Appendix D). The result is 

n--w I n  

W 

= (2~-1)!~~~;:?)+(2s- l)! H(21,+1 12s- 1)Szr2z~+1P211+1(po), (4.19) 
I , = ,  

an expansion valid for r < /3, with 1 = 2(1, + s), where matrix element H(21, + 2 I 2s- 1) 
and the lattice sums S, are given by 

Wl+ $1 " 2  
(21, + l)! (2s- l)!' = 0""' H(21,+1I2s-l)=- 

n-1 
(4.20) 

Taking all terms together we find the following expression for pi in spherical 
coordinates : 

+ c GiS(2s- l)! H(2n + 1 I 2s- 1) S2(n+s) ran+'} P2n+l(,uO). (4.21) 
5-1 



Viscous flow of charged particles through a tube 55 

Substituting this expression for pi in (4.4), making use of the relation A : 4  = 
- 1(1+ 1) 4 and of the orthogonality of the Legendre polynomials 4 we find the 
following infinite set of equations for the spherical multipole moments Gis:  

m m 

C Cis Si; h4n+3 - z, E, h3Sn,, - Gin,,(2n + 2)! + C Gis w1 
s-1 s=1 

I m 

= /3: { 2 Gis Si, h4n+3 - 22, Eo A'Sn, , + Gin,,(2n + 2)! (2n + 1) + C Gis o2 h4"+3 , 
s=1 s=1 

(4.22) 
with the following definitions: 

(4.23 a)  

(4.23 b)  

w1 = (2s- l)! (2n + 1) H(2n + 1 12s- 1) Sz(n+s), (4.23 c)  

w2 = (2s- 1)!(2n+ 1 ) ( 2 n + 2 ) H ( 2 n + l I 2 ~ - 1 ) S ~ ( ~ + ~ ) .  (4.23 d )  

We can find solutions for the spherical multipoles moments Gis by truncating this set 
of linear equations by taking into account only a finite number of spherical multipole 
moments and a finite number of cylindrical multipole moments qk. By increasing the 
number of multipole moments the precision of the solution is increased until the 
required accuracy in the result is obtained. To obtain a certain accuracy the number 
of cylindrical multipole moments has to be increased, when /3 increases, and the 
number of spherical multipole moments has to be increased when h increases. 

5. Governing equations, boundary conditions and solution for the velocity 
field 

5.1. Governing equations for the velocity Jield 
The solution for the ionic function pi as found in the previous section enables us to 
construct the solution for the velocity field. Outside the double layer the velocity field 
has to satisfy the Stokes equations. The problem without surface charges, to be referred 
to as the uncharged case, has already been studied by Wang & Skalak (1969, referred 
to hereafter as W & S). We will present a modified version of their calculation to include 
the charge effects. In order to illustrate the solution method we will use we will sketch 
the way the problem is solved for the uncharged case (W & S) and how this treatment 
is modified by the presence of the double layers, a situation we will refer to as the 
charged case. Following W&S we define, in addition to (4.2), the following non- 
dimensionalized variables (unprimed) which are defined in terms of the dimensional 
variables (primed) as 

Here V is the velocity, p the pressure, T~~ the stress tensor, $ the stream function, D the 
drag, p the fluid density, v the kinematic viscosity and R the radius of the tube. Owing 
to the symmetry of our system we are dealing with an axisymmetric flow and we can 
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define a Stokes stream function @ (not to be confused with the electrostatical potential 
y?, which fulfils the following fourth-order differential equation (Happel & Brenner 
1965): 

with the following form for E2: 
E2(E2‘(r)) = 0, (5.2) 

E2 = - + - - in cylindrical coordinates, 
[::2 :; (5.3) 

in spherical coordinates. (5.4) 1 E2 = [z+(1-c0s2(6)) a2 

ar2 r2 acosz(6) 

The fluid velocity is related to the stream function $ by the following expressions: 

la$ la’ 
Pap Pa2 

vz(p, z )  = --; up@, z )  = ~ in cylindrical coordinates, (5.5) 

vg(r, 6) = ~- ” in spherical coordinates. (5.6) 1 a’. 
r2 sin (6) rsin(6) ar 

vr(r, 6) = - 

The total discharge Q of the fluid and the spheres is given by 

Q = 271 J: vz(p, z )  p dp = - 271 - dp = - 2n[$(p, z)]:. 1: :: (5.7) 

We now choose the value of stream function at the axis of the cylinder equal to zero. 
Using this (5.7) becomes 

Q = - 271$( 1). (5.8) 

5.2. Boundary conditions for  the stream function $ 
Because we have to solve a fourth-order differential equation we must have also four 
boundary conditions. At the wall of the cylinder we have the following two conditions 
for the @ and the derivative of $. First we demand that the total discharge equals Q, 
so it follows from (5.8) that 

This expression is independent of the z-coordinate, which means that the stream 
function @ is constant along the wall of the cylinder. As a result the wall of the tube 
is followed by a streamline of the fluid flow. We now have to set the value for this 
velocity. In case of hard uncharged spheres, where no-slip boundary conditions apply, 
we have in a reference system fixed to the spheres 

(5.10) 

Boundary condition (5.10) for the uncharged case will change when we consider the 
influence of the thin double layer of the wall of the tube. From (2.15) we know that for 
the charged case the velocity at and relative to the cylinder wall in cylindrical 
coordinates is given by 

(5.11) 
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When the flow in the tube is undisturbed by the spheres or charge effects a pure 
Poiseuille flow develops. It is convenient to use a reference system fixed to the centre 
of a reference sphere. The spheres are supposed to be moving relative to the tube with 
a velocity U in the positive z-direction. Relative to the spheres the Poiseuille flow has 
the following stream function : 

$kPOiS = ( ;U- ;v )p2+pp?  (5.12) 

From (5.5) it follows that the velocity field of the Poiseuille flow is given by 

(5.13) 

The total discharge Q, as measured relative to the cylinder wall, cf. (5.8), is given by 

Q = -27c$@ = 1) = ;nV. (5.14) 

In a reference system fixed to the spheres, the total discharge Q* is given by 

Q* = Q-nU, (5.15) 

with Q and U still measured relative to the cylinder wall. The boundary conditions (5.9) 
and (5.10) at the wall of the tube become, for the uncharged case, 

(5.16) 

(5.17) 

According to (5.11) these boundary conditions become, for the charged case, 

$(p,z)Ip=l = --+;u, Q (5.18) 
27c 

Note that (5.16t(5.19) apply for a reference system fixed to one of the spheres. We now 
have formulated the problem in such a way that the total discharge Q, as measured 
relative to the wall of the tube, is completely determined by V. To derive the remaining 
two boundary conditions for the stream function $ at the surfaces of the spheres, we 
first must realize that there must be a streamline that has to follow the surfaces of the 
spheres so the stream function must be a constant along these surfaces. We have 
already set the value of $ equal to zero on the centreline of the cylinder, and 
because the poles of the sphere are on this line $ has to be zero on the surfaces of 
spheres. For the uncharged case no-slip boundary conditions on the spheres would 
apply and in a reference system fixed one of the spheres we have 

(5.20) 

$ = 0. (5.21) 

Again, these boundary conditions will change when we consider the charged case, 
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where the influence of the thin double layers of the spheres is taken into account, to 
become 

(5.22) 

$ = 0. (5.23) 

5.3. The solution of the stream function 
We will construct a solution of (5.1) that fulfils the boundary conditions (5.18) and 
(5.19) at the wall of the tube and (5.22) and (5.23) at the surface of the spheres. The 
solution is obtained using a modification of a method applied to the uncharged case, 
described by (5.1) with boundary conditions (5.16), (5.17), (5.20) and (5.21) that has 
already been studied by W & S. In this work a solution is constructed by writing the 
total solution for the stream function as 

with 

(5.24) 

(5.25) 

Here $tot,unch is the total solution for the uncharged case, $sph represents the influence 
of the spheres and $cyl represents the influence of the wall of the cylinder on the flow 
field. Substituting (5.24) into boundary conditions (5.16) and (5.17), we find that $l has 
to fulfil the following boundary conditions at the wall of the tube: 

= 0, 1Wl 
Pap 

v =-- (5.26) 

$h1 = 0. (5.27) 

The essential step in the analysis of W & S is to construct two fundamental solutions, 

$: = $:ph + $tyl (5.28) 

and $; = $&h + $Eyl, (5.29) 

with $fy, and $tyl the full solution of (5.1) in cylindrical coordinates which remains 
finite at p = 0 and containing unknown cylindrical multipole moments A,, B,, A,, B,, 
and C,, Do, C,, D,. The stream function $Sh belongs to a Stokeslet and $tPh belongs 
to a potential doublet, the two basic solutions necessary for constructing the stream 
function of a sphere moving in an unbounded fluid. By writing $iPh and $&h in 
cylindrical coordinates one obtains (W & S) 

and $& given by 

3 / 2 + A O ~ 4 + B O ~ 2  
P2 

a, 

$:= c 
n---m 2@' + ( z  - nd) ) 

P2 
" = n!m { 2@' + ( z  - nd),)l/' 

a, 

+ c {C,pI,(mkp)+~,p~Z,(mkp)}cos (mkz). (5.31) 

The term - p 2 / n d  is added in (5.31) to remove the singularity that arises due to the 
summation over all the Stokeslets. The Zl and I,  denote modified Bessel functions of 

m=1 
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the first kind. The boundary conditions (5.26) and (5.27) at the wall of the tube are used 
to determine the cylindrical multipole moments A,, A,, B,, B,, C,, C,, Do, D,. At this 
point $: and $: are completely determined and satisfy (5.1), (5.26) and (5.27). Further 
progress is made by the observation all derivatives of higher order with respect to z of 
$: and $; also fulfil (5.1), (5.25) and (5.26). All linear combinations of these terms with 
derivatives of even order, to keep the solution even in z, and unknown spherical 
multipole coefficients E,, and F,, also satisfy these equations and we may write the total 
solution $tot,unch of the (5.1) satisfying (5.26) and (5.27) as 

(5.32) 

After transforming (5.32) into spherical coordinates the boundary conditions (5.20) 
and (5.21) at the surface of the spheres will be used to solve the spherical multipole 
moments E,, and F,, (see W & S for details). This solution method may be compared 
to the construction of the solution for the ionic function pi in $4.2, where at first only 
the dipole term was taken into account, and then arising from the presence of the 
spheres higher-order terms were taken into account following similar lines as the 
analysis of W&S. The central point in the analysis of W&S is that (5.1) and the 
boundary conditions at the wall of the cylinder (5.26) and (5.27) are homogeneous. In 
the charged case this property is lost as a result of (5.19) where a surface velocity enters 
the problem. Fortunately, we may take care of this problem by introducing the stream 
function $.,*,, fulfilling (5.1), (5.18) and (5.19). The total stream function for the 
charged case is 

with $tot,unch as defined in (5.32) with unknown spherical multipole moments E,, and 
F,,, but the functions $: and $; in (5.32) are still given by the solution for the 
uncharged case and are given by W & S. The spherical multipole moments E,, and 4, 
are to be determined from boundary conditions (5.22) and (5.23) at the spheres: 

$tot, ch = $tot,unch + $cyl, * (5.33) 

$tot,ch = (5.34) 

and (5.35) 

with v8 given by (5.22). In order to generate a solution we first have to construct $,*,,, 
which has to satisfy the equation 

E2(E2$,*,,) = 0, (5.36) 

with the following boundary conditions at the wall of the cylinder: 

@,*,I = 0 9  (5.37) 

(5.38) 

The ionic function pi enters the Stokes stream function through boundary condition 
(5.28). The general solution of (5.36) that is periodic and even in z and stays finite when 
p = 0, is given by 

00 

$,*,,@, z )  = A,* p4 + B,* p2 + C {A: pZl(mkp) + B: p210(mkp)} cos (mkz). (5.39) 
m-1 
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The unknown cylindrical multipole moments A,*, B,*, A: and BZ have to be 
determined in such a way that the boundary conditions (5.37) and (5.38) are satisfied. 
Boundary condition (5.37) simply gives 

co 
A,* + B,* + C {A;  Il(mk) + BZ Z,(mk)} cos (mkz) = 0. (5.40) 

Boundary condition (5.38) is more involved because it contains the term V,pi. We use 
(4.20) where pi is given in spherical coordinates to derive an expression for V,pi in 
cylindrical coordinates (Appendix E) with the result 

m = l  

Vz pi 

I m 

= C G& (- l)'+l C - ( ~ ~ k ) ~ ~ K , ( m k )  + qL(mk)2"1Z,(mk) cos (mkz) - zi E,. (5.41) 
s=1 m = l  if 

After substituting (5.39) and (5.41) into (5.38), we find 

4A,* + 2B,* + C {mkA; I,(mk) + B;(210(mk) + mkI,(mk))) cos (mkz) 
a, 

m = l  

i=l s=l m = l  if 1 I m 

= { 5 5 Gis( - l)'+l C -(mk)2s K,(mk) + qk(mk)2s-1 I,(mk) cos (mkz) - zi E, 

where we have made use of the recurrence relations between modified Bessel functions. 
The spherical multipole moments G& of the ionic function pi are to be found from 
solution of (4.23). From (5.40) and (5.42) we are able to find the coefficients A,*, B,*, 
A: and BZ as 

1 5=5, 

kT 
A,* = - - C zi E, [ ly'(n: - n$) dy' , 2 y v  

(5.43) 

(5.44) 

(5.45) 

with 

2 m  

C C Gis( - 1)s" - (mk)2SIl KO + q~(mk)2"111 I, 
B; = i=ls=l  if 

21, z1 + mk(I? - 1;) 

x %[ ly'(ny -n$) dy' . (5.46) 
T V  1 5=5, 

At this point $zYl is completely determined and we may use boundary conditions (5.34) 
and (5.35) to determine the spherical multipole moments Ezs and e,. For this purpose 
(5.33) has to be written in terms of spherical coordinates. From W & S  we know the 
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expression $tot, unch + $pois in spherical coordinates. We rewrite 
coordinates as (Appendix C) 

4 = P{ - B,* rPXpo) + A,* r3( -fp:(Po) +&pXp0>>> 
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in spherical 

( - l)*+l (rnk)2nr2n+1 
(2n + 2)! (4n + 5) 

+ B; 

Here Py are the associated Legendre polynomials of the rnth order and nth degree, 
given by (Hobson 1955) 

(5.48) 

The total stream function $tot, ch expanded around R, may now be written in spherical 
coordinates as 

r Z z f 2 (  - a + p1 + yl) + r2z+4vl + E2 { (ir2-$r4) aZ, 
4 

s=1 

V 
x [ (;-$ r2 -:r4] 8z,o +%r4R,, + (- B,* r2 -;A,* r4) i3z,o 

> 

+ &r4A,* aL, + A, rZzf2 + c r2'+' + G } P' P Z + l C u O ) ,  (5.49) 

where equations for 7, <, pl, yl, vl, p2, y2, v2, a, A,, B,, C,, D, may be found in 
W & S. A,, c, G represent the influence of the double layers: 

B:( - l ) ' ( ~ ~ k ) ~ ~ + ~ 1 ~  
= (21+2)!1, > 

m = l  

B:( - l)z+1(rnk)2z 
= m=l  (2()!(41+1) ' 

a, B;( - l )z+1(~k)2zf2 
G =  c 

m=l (21+2)!(41+5) . 

Substituting (5.49) in boundary conditions in (5.34) and (5.35) together with 
m 

Pi = c ax4 PZZ+lCuO>, 
z=o 

(5.50a) 

(5.50 b) 

(5.50~) 

(5.51) 

where the definition of aj(r) is clear from (4.19), using the orthogonality of the 
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associated Legendre polynomials P~,,,(,u,) leads to two linear sets of equations for the 
spherical multipole coefficients E,, and F,, which may be combined to give 

1 6h5 - 

+ c F,,{(41+ 3 )  hgZ+l( - 7 + p, + 7,) + (4f+ 5 )  h4,+3([ + r,)} 
S=l 

7 v  
+(4f+5)h4,+30-1}+ 3 --- h- Vh3 6z,,+-h58L,1 { ( Y  I;? I 30 
+ ( - 3 B , * h - 4 4 A , * h 3 ) 6 ~ , , + ~ h 5 A , * S , , l + ( 4 f + 3 ) A , h 4 z + ’ + ( 4 f + 3 ) ~ h 4 z + 1  

(5.52) 1 5=5p 

+ (41+ 5 )  q itgzf3 = - n?) dy’ , 
i=l 

and 

+ c F,,{(41+ 1 )  h4z+2( -7+p2 + y 2 )  + (4 f+ 3 )  h4,+5(5+ c,)} 
s=1 

2 
+E2 { (;A3 -$ h5) 8,. + - h78,, l} + C E2,{(4f+ 1) h4zf3( - a + P1 + yl) 

3P s=1 

5v + (41+ 3)  h41+50-1) + { (;-$ A 3  -fVh5} aL, , +% h76,. 

+( - B,* h3-FA,* h5) dL,, +gh7A,* + (4f+ 1) A ,  h4z+3+(4f+ 1) 
2 

(5.53) 1 C=lp 
+ (4f  + 3)  q hgZ+5 = - n?) dy’ . 

i=l 

Ignoring the electro-kinetic effects by setting E, = 0, (5.52) and (5.53) reduce to 
equations given by W & S. Because we restrict ourselves to a symmetrical electrolyte, 
with an absolute valence 2, the integrals occurring in (5.52) and (5.53) simplify (Chen 
& Keh 1992) to give 

e0e,kT 
y’(n! - n?) dy‘ = ~ 

2e2Z2 
[4qc+41ncosh(0], (5.54) 

c = ZeC/4kT, (5.55) 

Sam 
with 

and = - 1 when we are dealing with co-ions, and < = 1 when we are dealing with 
counter-ions. After introducing the values for the system parameters we can solve 
(5.52) and (5.53) for F,, and EZs. Similarly as in the case of the ionic function (cf. $4.2) 
we solve these infinite sets of linear equations numerically by taking into account a 
finite number of spherical multipole moments and cylindrical multipole moments. By 
increasing these numbers of multipole moments the precision of the solution is 
increased until the required accuracy in the result is obtained. To obtain a certain 
accuracy the number of cylindrical multipole moments has to be increased when /3 
increases, and the number of spherical multipole moments has to be increased when h 
increases. 
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6. Transport properties 
After solving for the ionic function pi using (4.23), one may solve for the coefficients 

E,, and F,, from (5.52) and (5.53) and the total solution for the flow problem is 
obtained. From this the transport properties of the system may be determined. For this 
we find the viscous drag on the spheres and the mean pressure drop in terms of the 
multipole moments. The viscous drag D on the spheres and the mean pressure gradient 
is obtained in a similar way as W&S, using (5.49) for the total stream function. By 
integrating the expression for the stress tensor over the surface of the sphere this gives 
for the viscous drag (W & S) 

The mean pressure gradient Ap/P per sphere is evaluated as (W & S) 

D = 4x5. (6.1) 

AP 8 
P P  
-= --(5+2E2)- - 4( v+ 4 4 7 .  

The electrical force F, on the sphere is given by 

F, = pVYdr, (6.3) s 
with p the charge density of the double layer. Because with the thin double layer theory 
we choose the surface of the particle just outside the double layer, the net charge is 
zero. However, the charge density will have a dipole moment due to the polarization 
of the double layer induced by the external electrical field Eo. This dipole moment is 
proportional to Eo which will lead to an electrical (Maxwellian) force on the particle 
of O(lEo12). Since we are only considering disturbance linear in Eo we may neglect this 
force (O'Brien &White 1978). Because we are dealing with a linear problem the general 
form for the coefficients F,, and E,, may be written as 

Note that we have related the coefficients to the applied undisturbed electrical field E,,. 
In general this field is not equal to the electrical field one measures in the system, which 
is the volume average of V Y  given by 

VYdr, s, 
with V denoting a volume large compared to the characteristic dimensions of the 
inhomogeneities of the system. Since we are dealing with a periodic system, i.e. the 
system might be thought of as being built up from replicas of just one (Wigner-Seitz) 
cell containing one particle, we may restrict the averaging to the volume of just one cell 
denoted by 52. However because V Y  is a period function with the periodicity of the 
system, after averaging only the non-periodic part of the function survives, which gives 
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From this is follows that we may simply replace E, by (V!Q when we want to relate 
the results to the volume-averaged electrical field instead of the external undisturbed 
field. In dimensional form that the viscous drag D' and the total pressure drop per 
sphere Ap' may be written as 

-K,U'+K,V'+K, (6.8) 

Here W is given by 
T cw + In (cosh (cw)) 

i=l 

(6.10) 

with T and cw as defined in (5.55). The dimensionless coefficients K,, K,, K,, P,, P,, 4 
have to be determined now as a function of system parameters like A, p, cp, cw and KU. 

These coefficients are given in terms of F,,, F,,, Fez, E,,, E,, and E2, as 

(6.1 1) 

pu=-8F,,-16E2,; PU=-8F,,-l6E2,; 4' - (-8F,,-l6E2,). (6.12) (2J-l 
The coefficients K,, K,, P,, P, only depend on the parameters p and h and were 
calculated by W & S. The results of the computer program for numerically solving the 
coefficients were tested against the results of W & S and good agreement was found 
(relative error < 1 %). The values for K,, K,, P,, P, are tabulated in W & S. In order to 
make comparison with the work of W&S feasible the tables presented here have the 
same range of p and h as in their work. The coefficients K, and P, which also have to 
be determined do not only depend on /3 and A, but also on the parameters describing 
the electrical state of the system, like KU, cp, 6, mi and Z .  The results for these 
coefficients K, and 4 were tested in two ways. First, we have calculated the 
electrophoretic mobility of an array of small spheres moving in the tube, for different 
values for KU, cp and 2, by setting cw = 0, h = 0.01, p = 40, V' = 0. Because the spheres 
are very small relative to the radius of the tube and the spheres are separated by 2000 
diameters from each other we may compare this situation to one isolated sphere in an 
infinite medium. The behaviour of the electrophoretic mobility including the 
polarization effect has been well studied for several values of KU, cp and Z. We have 
checked our results with those of Chen & Keh (1992, table 1) and their results were 
almost exactly recovered. Secondly, by using the above mentioned values for the 
parameters 6, /3 and V', but by increasing A, we could study the influence of the 
uncharged wall on the electrophoretic mobility of a single sphere. This situation has 
been studied by Keh & Anderson (1985) who neglected the polarization effects of the 
double layer and obtained an expression for the electrophoretic mobility valid up to 
O(h6). This limit is reached in our model by choosing a sufficiently large value for KU, 

so that condition (1.2) is fulfilled and polarization effects can be ignored, and 
comparison with their results is allowed. Again almost identical results for the 
electrophoretic mobility were found. In principle it is possible to determined the 
coefficients K,, K,, K,, P,, P,, P, for arbitrary values of the system parameters, provided 
a sufficient number of multipoles are taken into account. Some examples of the results 
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h 

(4 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(b) 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

p=  2h 

0.460 
0.810 
1.316 
2.098 
3.377 
5.661 

10.40 
23.21 
87.07 

0.536 
1.782 
4.065 
8.057 

15.09 
28.21 
56.07 

132.3 
514.0 

p = l . O  p = 1 . 4  

1.200 1.234 
1.488 1.597 
1.871 2.116 
2.439 2.873 
3.376 4.056 
- 6.132 
- 10.40 
- - 

- - 

1.415 1.455 
3.351 3.604 
5.908 6.740 
9.477 11.34 

15.09 18.46 
- 30.80 
- 56.07 
- - 
- - 

p = 2.0 

1.240 
1.623 
2.196 
3.078 
4.502 
7.008 

12.13 
25.78 
92.48 

1.462 
3.665 
7.013 

12.23 
20.72 
35.71 
66.26 

147.7 
546.3 

p = 4.0 

1.241 
1.630 
2.228 
3.184 
4.807 
7.839 

14.44 
33.28 

133.5 

1.463 
3.681 
7.115 

12.65 
22.15 
40.04 
79.17 

191.3 
789.9 

p = 40.0 

1.241 
1.635 
2.254 
3.275 
5.089 
8.693 

17.21 
44.94 

225.5 

1.464 
3.693 
7.198 

13.02 
23.45 
44.40 
94.42 

258.3 
1334 

TABLE 1. The coefficients (a) K, and (b) P, for the following set of parameters: ecp/kT = 1 ; 
ecw/kT = 0; Z = 1 ; KU = 100; m, = 0.4. 

h 

(4 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(b) 

p =  2h 

0.926 
1.625 
2.629 
4.166 
6.657 

11.08 
20.24 
45.07 

168.6 

1.089 
3.675 
8.482 

16.92 
31.71 
59.07 

116.5 
271.5 

1031 

p =  1.0 

2.408 
2.962 
3.702 
4.812 
6.657 
- 

- 

- 

- 

2.855 
6.796 

12.12 
19.71 
31.71 
- 

- 

- 

- 

/3= 1.4 

2.474 
3.168 
4.156 
5.605 
7.888 

11.92 
20.24 
- 
- 

2.934 
7.280 

13.68 
23.21 
38.11 
63.98 

116.5 
- 

- 

p = 2.0 

2.486 
3.215 
4.298 
5.961 
8.662 

13.45 
23.32 
49.75 

178.5 

2.948 
7.390 

14.17 
24.78 
42.17 
72.98 

135.6 
301.0 

1093 

p = 4.0 p = 40.0 

2.487 2.488 
3.228 3.239 
4.356 4.407 
6.154 6.329 
9.218 9.750 

14.97 16.57 
27.55 32.71 
63.59 83.61 

254.2 358.4 

2.949 2.951 
7.421 7.446 

14.36 14.53 
25.59 26.31 
44.91 47.50 
81.31 89.99 

160.7 190.8 
385.6 507.9 

1557 2213 

TABLE 2. The coefficients (a) K, and (b) P, for the following set of parameters: ecp/kT = 1; 
e ~ w / k T = l ; Z = l ; ~ a = 1 0 0 ; m , = 0 . 4 .  

for parameters K, and P, as a function of and h for different values of the parameters 
describing the electrical double layer are given in tables 1 (a, b)  and 2(a, b). From the 
expressions for the total force on the particle and pressure gradient the transport 
properties can be determined. 
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7. Electro-kinetic transport properties 
We will discuss some modes of electro-kinetic transport that may occur in the 

system. When the system parameters like a, A, Ka, 6, 6, Z and mi are known, we are 
able to evaluate the coefficients K,, K,, K,, P,, P,, and P,, from which the transport 
properties are fully determined by (6.8) and (6.9). Depending on the constraints on the 
system different modes of electro-kinetic transport may be observed, as the following 
examples show. 

(i) Electrophoretic and electro-osmotic transport in a closed system 
When an electrical field is applied and the spheres move force free through the fluid 

the spheres will attain an electrophoretic velocity U’, measured relative to the wall of 
the tube. In addition to this an electro-osmotic flow will develop in the tube as a result 
of the double layer near the wall of the tube. The total discharge of particles and fluid 
through the tube is in our calculation given by Q’, as measured relative to the wall of 
the tube. In a closed system the total discharge equals, by definition, zero. This 
situation is established by the system by developing a counter-pressure that induces a 
balancing counterflow in the tube. For this situation we have in (6.8) and (6.9): 

D’ = 0; U’ + 0 ;  Q’ = inR2V‘ = 0 ;  Ap’ + 0. (7.1) 

From (6.8) it follows that the electrophoretic velocity U’ is given by 

and from (6.9) that the pressure drop per sphere Ap’ is given by 

(ii) Electrophoretic and electro-osmotic transport in an open system 

have by definition a zero pressure gradient. So, we have 
In this case we have the same conditions on D and U’ as in (i), but in this case we 

D’ = 0; U’ + 0 ;  Q’ = ;nR2V’ # 0 ;  Ap‘ = 0. (7.4) 

Again, from (6.8) the electrophoretic velocity U’ is given by 

Equation (6.9) for the pressure drop per sphere with Ap‘ = 0, together with (5.14), gives 
a linear relation between the total discharge Q’, as measured relative to the wall of the 
tube, and the applied electrical field Eh: 

(iii) Pure electro-osmotic transport in a closed system 
In this case we assume that the spheres are fixed to their positions relative to the wall 

of the tube. They will experience a drag force that is balanced by an external force of 
an undefined nature. In case of a closed system, we have 

D’ + 0; U’ = 0 ;  Q’ = $nR2V‘ = 0 ;  Ap‘ =+ 0, (7-7) 
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which leads to the relations 

D’ = 6nThR(Ke(co cr &/TI Eh), 

AP’ = [P ,  - 16(Cw/Cp) WPl(co cr C p / R )  Eh. 

(7.8) 

(7.9) 

Closely related to this mode of transport is the possibility of an applied pressure 
gradient opposing the electro-kinetic motion of the spheres. In this case we have D’ = 

0, instead of D’ $; 0. From (6.8) and (6.9) we find the total discharge and the required 
pressure gradient as 

Q’ = - (nR2Ke/2Kv) (€0  cr C p / y )  Ei, (7.10) 
(7.11) AP’ = {(P, + 4P) KeIKv + P, - 16(Cw/Cp) WP} (€0 6, Eh. 

(iv) Pure electro-osmotic transport in an open system 
Again, we assume that the spheres are fixed to their positions in the tube and that 

they experience a viscous drag force that is balanced by an external force of an 
undefined nature. In case of an open system, we have 

D’ $; 0; U’ = 0; Q’ = &R2V $; 0 ;  Ap’ = 0, (7.12) 
which leads to 

(7.13) D’ = 6nThR{Ke(co cr Cp/?) Eh + (2Kv Q’/nR2)}, 

(7.14) 

where (7.14) gives a linear relation between the total discharge Q’ and the electrical 
field Eo. 

8. Properties of the streamlines 
When we characterize the streamline pattern (as measured relative to the spheres) by 

the number and location of the vortices, one of the following four situations may occur, 
depending on the system parameters: (i) no vortices at all; (ii) vortices between 
subsequent spheres; (iii) vortices near the surface of the spheres; (iv) situation (ii) and 
(iv). 

To illustrate this we have plotted in figure 2(a-d) the streamlines, measured relative 
to the spheres, in the region - 1 d.p < 1 and -0.7 < z < 0.7. Owing to the periodicity 
of the system the float at every point of the system may be constructed by translation. 
The parameters in these plots are chosen as follows: /3 = 1.4 and h = 0.5, Ka = 50, 
mi = 0.4,Z = 1, U = 0 and ( e o e r ( k T ) 2 / 2 2 2 e 2 ~ ~ )  Eo = 1 and we have varied V, e{,/kT 
and eCW/kT in the different plots. Because we have chosen U = 0, the spheres are 
fixed relative to wall of the tube, so in this case the streamlines and the discharge Q as 
measured relative to the spheres are also the streamlines and the discharge as measured 
relative to the tube. The number of grid points in the z-direction is 41 and in the p- 
direction there are 5 1. The corresponding transport coefficients Ke and P, for the case 
eC,/kT = 1 and eCw/kT = 2 may be found in tables 3 (a) and 3 (b). We will first discuss 
the case where V = - 5 ,  e&,/kT = 1 and eCw/kT = 2 plotted in figure 2(a). Both the 
wall of the cylinder and the spheres are positively charged, and the electrical field Eh 
points in the positive z-direction. Because V is negative there has to be a discharge in 
the negative z-direction. The electrical double layer introduces a slip velocity at the 
bounding surfaces, directed in the negative z-direction. These requirements makes it 
possible to develop a flow without vortices. When V increases to V = - 1.5, as plotted 
in figure 2(b), the total discharge must be reduced, still satisfying the slip boundary 
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FIGURE 2. Streamlines, as measured relative to the sphere, for the following sets of parameters: (a)  
eCp:,lkT = 1, eCw',lkT = 2; V = - 5 ;  (b) eCp',lkT = 1, eCW:,lkT = 2; V = - 1.5; (c)  eCp:,lkT = 1, eCw/kT =- 
-2; V = 5 ; ( d ) e C p / k T = - l , e C W : , l k T = 2 ;  V=O.Ina l lcases ,Z= 1, U = O ; p =  1 . 4 ; h = 0 . 5 ; ~ a =  
50; E ~ E , ( ~ T , ) ~ E ~ / ~ ~ ~ v ~  = 1, mi = 0.4. 

h 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(b) 0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(a) 0.1 

p = 2h 

1.384 
2.427 
3.922 
6.205 
9.889 

16.40 
29.77 
65.48 

236.8 

1.635 
5.543 

12.84 
25.67 
48.1 1 
89.40 

175.2 
402.2 

1468 

p =  1.0 

3.593 
4.408 
5.502 
7.149 
9.889 
- 

- 

- 

~ 

4.268 
10.18 
18.23 
29.79 
48.1 1 
- 

~ 

- 

~ 

p =  1.4 

3.691 
4.709 
6.158 
8.285 

11.64 
17.58 
29.77 
- 

- 

4.384 
10.89 
20.50 
34.87 
57.40 
96.46 

175.2 
- 

- 

p = 2.0 

3.709 
4.776 
6.354 
8.773 

12.70 
19.64 
33.85 
71.42 

248.7 

4.405 
11.05 
21.17 
37.04 
63.02 

108.9 
201.3 
440.8 

1543 

/3 = 4.0 

3.710 
4.794 
6.432 
9.026 

13.41 
21.57 
39.13 
88.24 

336.6 

4.408 
1 1.09 
21.43 
38.11 
66.62 

119.7 
233.2 
545.8 

2090 

p = 40.0 

3.712 
4.809 
6.499 
9.255 

14.10 
23.56 
45.33 

111.7 
458.2 

4.409 
11.12 
21.66 
39.08 
70.01 

130.8 
270.2 
69 1.6 

3207 

TABLE 3. The coefficients (a) K, and (b) P, for the following set of parameters: eCp:,lkT = 1 ; 
eCw;,/kT = 2; Z = 1 ; KU = 50; mi = 0.4. 
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conditions at the bounding surfaces. This is achieved by the system developing two 
vortices, one rotating in a clockwise direction and the other counterclockwise. When 
V becomes positive and the zeta-potential of the wall of the tube changes sign, so that 
e&,,/kT = -2 and e&,/kT = 1, a flow with only one vortex near the surface of the 
sphere develops (figure 2c). The vortex near the wall of the tube is not present since the 
negative zeta-potential of the wall of the cylinder induces a surface flow in the positive 
z-direction which is compatible with the demand of a positive discharge. When the 
sphere has negative charge, so that e&,/kT = - 1 with etJkT = 2, U = 0, V = 0 we are 
dealing with a purely electro-osmotic motion. In this case one vortex develops between 
the spheres in the neighbourhood of the wall of the tube (figure 2d) .  The presence of 
vortices will be of importance for the convective transport of molecules in the system. 
One may, for instance, think of the molecules of the sample to be separated in the case 
of micellar electro-kinetic capillary chromatography. The efficiency of the separation 
by the micelles will be influenced significantly by the vortices. 

9. Conclusions 
In this paper we have shown how to use the thin double layer theory to derive the 

electro-kinetic transport properties in a system consisting of a cylindrical tube 
containing a linear array of identical charged spheres. Polarization effects of the 
electrical double layer are taken into account and the theory is valid for arbitrary zeta- 
potentials and for thin electrical double layers, introducing a typical error of 0(1/Ka). 
All interactions, electrical double layer and hydrodynamical interactions, between of 
the spheres and between the spheres and the wall of the tube are taken into account. 
By increasing the number of multipole moments it is possible to obtain the transport 
coefficients to any desired accuracy. Expressions for the pressure drop per sphere and 
the hydrodynamical drag on the spheres are given in terms of the velocity of the 
spheres, the total discharge and the applied electrical field. The coefficients in these 
expressions depend on the system parameters and have to be evaluated numerically by 
truncating an infinite set of linear equations for the multipole moments. Depending on 
the conditions placed on the system, e.g. an open or closed system, a backflow may 
develop resulting in complex flow behaviour. This results in rather complex plots for 
the streamlines, sometimes with vortices, which will have significant influence on the 
convective transport properties of small molecules present in the system. Applications 
of this work may be found in the electro-kinetic displacement of charged solid particles 
or charged emulsion droplets through porous media, e.g. tertiary oil recovery, micellar 
electro-kinetic capillary chromatography and soil cleaning. 

The author wishes to express his gratitude to Professor Dr H. N. Stein for 
stimulating discussions and useful remarks during the preparation of this paper. 

Appendix A 
We will focus on a symmetrical salt so that 

z+ = -z- = Z and 

The Poison-Boltzmann equation reads 

ny  = n? = n". 

d2# 2eZn" 
~~ - - 
dx2 eoer sinh rg), #( co) = 0 and #(O) = #o.  
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The solution for a flat-plate geometry is 

$(x) = -In 2kT [l+yexp(-rx)] 
Ze l-yexp(-Kx) ' 

with y = tanh (Ze$,/4kT) and r2 = (2e2/e, e,kT) nmZ2. 

Appendix B 
Multiplying (4.11) by sin (mkz) and integrating from -$!3 to +/3 using 

sin (mkz) sin (m'kz) dz = m, ri2 
we may evaluate the following integrals as 

and 

= 2(mk)3~,(mk). 

To derive (B 2) we start from the expression (Watson 1944) 

cos(mkz) 
5i2 dz = $(mk)2K2(mk). s -m (1 +z  1 

Differentiating (B 4) once to (mk) we find 

where we have used the recursion relation 

2K2(mk) + mkKi(mk) = - mkK,(mk). (B 6) 
Integral (B 3) is partially integrated twice, which leads to 

For evaluating this integral we use (Watson 1944) 

co cos(mkz) 
3,2 dz = 2mkK1(mk). s -m (1 +z 1 

Differentiating (B 8) once to (mk) leads to 
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Appendix C 
Using the relation (MacRobert 1948) 

with x = R cos (0), y = R sin (B), Zo(z) = J,(iz), 

we find 
(- l)n (mkr)2n 

Io(mkp) cos (mkz) = pZn(P)* n=o 2n! 

Differentiating (C 3) once to z gives 

Appendix D 
In order to write expand the last term in (4.18) around the lattice point Rn = 0, we 

start from the following generalized form of the addition theorem for spherical 
harmonics (McKenzie, McPhedran & Derrick 1978) : 

valid for r1 < R, with the definitions 

rl = r - R l ;  r2 = r - R 2 ;  R = R, -R , ,  

with 

Using this we find 
W 

(D 5 )  
1 

z,=o 

with 
I! 

H(1, I I,) = (- 1)"- and I = ll+12. 
ll!12! 

Using this expression we can write (4.15) as 
m 

C m & , ( P n )  = C' C H(I1 I I " ) R " , ~ '  &(PR)r?p  1,  ( Pl); 1 = 4 + 1 2 .  (D 7) 
" 1  

n =-w rn n=-w I ,  

Introducing the lattice sum S,: 

we may write 

n=-m I n  z,=o 
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Here we have used that S, = 0 for l odd. This is because in our geometry we have 
p R  = 1 o rpR = -1 and the property 4(-1) = (-1)' and e(1) = 1. For leven we find 

Appendix E 

(E 1) 
With p = 1 

(E 2) 
We now first expand the first term in a Fourier series, and because this term is odd in 
z we must expand it in a sin series: 

(E 3) 
2rc 

312 = c A m  sin(mkz) with k = -. 
m ( z  - nP) 

m 

P 
c 

n=-m ((1 + (z-lap> ) m=l  

So we find 

(2mkK1(mk)) = - (2K1(mk) + 2mkK;(mk)) = 2mkK0(mk), (E 4) 
a 

a w l  
- - -- 

where we have used the recursion relations for the modified Bessel functions, so 

A m  = (4//3)mkK0(mk). (E 5)  
Substituting this in (E 1) gives 

a&,t - a a2s-2 " 4  

a Z  a Z  s=l m=l  P ~ - -( c G:s p{ CI -mkK,(mk) sin (mkz) 

m + c q i  I,(mk) sin (mkz) 
m=l 

m 00 

= G&( - l)'+l C - ( W Z ~ ) ' ~  K,(mk) 
s=1 m=l iI 

I + qk(mk)2S-1 I,(mk) cos (mkz) - zi E,. (E 6 )  

This expression gives v, at p = 1. Note that u,(p = 1) is indeed an even function in z 
so this is consistent with our assumption that the stream function is an even function 
in z. 
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